
1	
	

Pryvate Instant Message Encryption v2.0
(Pime v2.0)

Johan Pascal

March 6, 2019
Version 1.0

	
	

Contents

1 Introduction .. 3

2 Notations ... 4

3 Brief introduction to Signal protocol specification documents ... 5
3.1 The	Double	Ratchet	Algorithm	..	5
3.2 The	X3DH	Key	Agreement	 Protocol	...	5
3.3 The	Sesame	Algorithm	...	5

4 Major discrepancies between Pime v2.0 and Signal protocol .. 6
4.1 Double	Ratchet	...	6

4.1.1 Group	chat	management	...	6
4.1.2 AEAD	encryption	scheme:	AES256-GCM	..	7

4.2 X3DH	Identity	Key	signature	..	7
4.3 Authentication	..	7
4.4 Optional	features	not	implemented	..	7

5 Implementation details .. 8
5.1 Preliminaries	...	8
5.2 HKDF	 8
5.3 Double	 Ratchet	..	8

5.3.1 Diffie-Hellman	..	8
5.3.2 KDF_RK	...	8
5.3.3 KDF_CK	...	9
5.3.4 RatchetEncrypt	...	9
5.3.5 RatchetDecrypt	...	12
5.3.6 Associated	Data	...	14

5.4 X3DH	 14
5.4.1 DH	..	14
5.4.2 Sig	...	14
5.4.3 Shared	Secrets	 generation	..	15
5.4.4 X3DH	test	 server	..	15

5.5 Sesame	..	15
5.5.1 Scenario	1:	first	encryption,	multiple	devices	..	16
5.5.2 Scenario	2:	group	chat	..	17

5.6 Mutual	authentication	and	peer	device	status	...	18
5.7 Keys	and	sessions	management	..	19

2	
	

5.7.1 Identity	Key	..	19
5.7.2 Signed	Pre-Key	...	19
5.7.3 One-time	Pre-Key	...	19
5.7.4 Double	Ratchet	Sessions	..	20
5.7.5 Skipped	message	keys	...	21

5.8 Local	Storage	...	21
5.8.1 Devices	tables	...	21
5.8.2 X3DHs	tables	...	22
5.8.3 Double	ratchet	tables	...	22

5.9 Summary	of	cryptographic	algorithms	used	...	24
5.9.1 Double	Ratchet	...	24
5.9.2 X3DH	...	24
5.9.3 Cryptographic	libraries	...	24

6 Protocol specification ... 25
6.1 Double	Ratchet	message	...	25

6.1.1 Header	...	26
6.1.2 Payload	in	cipher	message	encryption	policy	..	26
6.1.3 Payload	in	Double	Ratchet	message	encryption	policy	26
6.1.4 X3DH	init	..	26

6.2 Cipher	Message	...	26
6.3 X3DH	message	..	27

6.3.1 Register	User	Message	..	28
6.3.2 Delete	User	Message	...	28
6.3.3 post	Signed	Pre-key	Message	..	28
6.3.4 post	One-time	Pre-key	Message	..	28
6.3.5 get	peers	key	bundles	Message	..	29
6.3.6 peers	key	bundles	Message	..	29
6.3.7 get	Self	OPks	Message	..	29
6.3.8 elf	OPks	Message	...	29
6.3.9 Error	Message	...	30
6.3.10 Deprecated	Register	User	Message	...	30

7 References ... 31
	
	
	
	
	
	
	
	
	

3	
	

1 Introduction

Pryvate Instant Message Encryption (Pime) v2.0 implements the Signal protocol allowing
users to privately and asynchronously exchange messages. Detailed specification of the Signal
protocol can be found on the Signal website. Pime supports multiple devices per user and
multiple users per device.

Pime is designed to be used with Pryvate, an open source SIP phone. Pime establishes

encrypted sessions and encrypts messages but relies on Pryvate to acquire the unique
identification string of peer devices and route the messages to their recipients. The use of
Pime with other message delivery software is possible but is out of the scope of this document.

Pime is written in C++11 and the library uses templates to provide support for Curve25519-

and Curve448-based cryptographic algorithms. The library supports one or both curves
according to build settings.
A user’s network (all clients and keys server) must commit to using either Curve25519 or
Curve448, but a device may host several users communicating on separate users’ networks;
using different curves.

Note: Pime v1.0 was based on SCIMP. This document presents Pime v2.0, which is neither
related to nor compatible with Pime v1.0. In this document the use of the term Pime refers to
Pime v2.0.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

4	
	

2 Notations

AǁB denotes the concatenation of byte sequences A and B

A(value) the bytes sequence A size is value. For example, key(32bytes) denotes a 32 bytes
long buffer called key. Several values may be included in a comma-separated list, indicating
that several sizes are possible.

element{instances} denotes the number of occurrences of a given element. Instances may be a

number, a range or a comma-separated list of possible values. For example, key{4} means 4
keys, key{0, 1} means either 0 or 1 key.

element[values]: element value can be one of the values given in a comma-separated list. For

example, type[1, 2, 3] means type equals either 1, 2, or 3.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5	
	

3 Brief introduction to Signal protocol specification documents

3.1 The Double Ratchet Algorithm

“The Double Ratchet algorithm[1] is used by two parties to exchange encrypted messages based on a
shared secret key. Typically the parties will use some key agreement protocol (such as X3DH[2]) to agree
on the shared secret key. Following this, the parties will use the Double Ratchet to send and receive
encrypted messages.

The parties derive new keys for every Double Ratchet message so that earlier keys cannot be

calculated from later ones. The parties also send Diffie-Hellman public values attached to their
messages. The results of Diffie-Hellman calculations are mixed into the derived keys so that later keys
cannot be calculated from earlier ones. These properties give some protection to earlier or later
encrypted messages in case of a compromise of a party’s keys.”

3.2 The X3DH Key Agreement Protocol

“'X3DH'(or 'Extended Triple Diffie-Hellman')[2] key agreement protocol establishes a shared secret key
between two parties who mutually authenticate each other based on public keys. X3DH provides
forward secrecy and cryptographic deniability.

X3DH is designed for asynchronous settings where one user ('Bob') is offline but has published some

information to a server. Another user ('Alice') wants to use that information to send encrypted data to
Bob and also to establish a shared secret key for future communication.”

3.3 The Sesame Algorithm

“The Sesame algorithm[3] manages message encryption sessions in an asynchronous and multi-device
setting. Sesame was designed to manage Double Ratchet sessions[1] created with a X3DH key agreement[2].
However, Sesame is a generic algorithm that works with any session-based message encryption
algorithm that meets certain conditions.”

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

6	
	

4 Major discrepancies between Pime v2.0 and Signal protocol

This section will not go into the details of the Signal protocol specification but will focus
only on the points where the Pime v2.0 implementation does not follow the Signal
specification documentation[1][2][3]. A prior knowledge of these specs is essential to understand
the possible effects of such discrepancies.

4.1 Double Ratchet

4.1.1 Group chat management

The group chat mechanism implemented by Whisper Systems in libsignal-protocol-c[10] uses
an unspecified (at least in Double Ratchet document[1]) feature, the sender key, which:

1. When accepting membership, a group member creates its sender key and dis- tributes
it to all other members using pairwise Double Ratchet sessions; then

2. Members use their sender key to encrypt messages to the group, deriving it by using a
simple symmetric ratcheting.

This mechanism allows an efficient server-side fan-out but loses the break-in recovery property
provided by the Double Ratchet mechanism.

Operating in a multi device environment, Pime provides the following mechanism to save

bandwidth when sending message to multiple devices:

1. Generate a random key and use it to encrypt the message.

2. Use Double Ratchet sessions to encrypt the random key.

3. Send to server a bundle of:

DR encrypted random key{one for each recipient device}
ǁ Message encrypted using the random key

4. Server fans out the messages to recipients’ mailboxes posting only the appropriate
double ratchet encrypted random key and encrypted message.

This mechanism is optional and the default behavior of the library is to use it when it saves

upload bandwidth, using a regular encryption in the Double Ratchet message otherwise.

The bandwidth and computational power consumption is greater than the Whisper System
implementation but all the exchanges are protected by an actual Double Ratchet; maintaining
the break-in recovery property.

Silent members/devices (lost devices and users quitting the network are good candidates)

may result in weakness in the break-in recovery as no Diffie-Hellman ratchet step is ever
performed. This is mitigated by setting a limit to the sending chain length. The sending device
would create a new Double Ratchet session fetching keys from X3DH key server if the limit is
reached.

7	
	

Note: The actual implementation generates a 32 bytes random seed derived through HKDF[8]
into a 32 bytes key and a 16 bytes nonce. The DR session encrypts the 32 bytes random seed
using AES256-GCM (with 16 bytes authentication tag); producing a 48 bytes output to
transmit the key.

4.1.2 AEAD encryption scheme: AES256-GCM

The Double Ratchet specification [1, section 5.2] recommends the use of a SIV based AEAD
encryption scheme.

The Pime implementation of the Double Ratchet Chain Key derivation is described in 5.3.3

of this document. The message key(32bytes) and initialisation vector (16bytes) are generated,
used and destroyed during the encryption process. The direct use of an AES256-GCM as the
AEAD encryption scheme is assumed to be secure as the key and IV are not reused.

4.2 X3DH Identity Key signature

The X3DH specification uses ECDH keys only in combination with XEdDSA[4] to provide an
EdDSA-compatible signature using its Identity key (Ik) formatted for X25519 or X448 ECDH
functions.

Pime performs the same signature and ECDH operations but the identity key (Ik) is

generated, stored and transmitted in its EdDSA format and then converted into X25519 or
X448 format when an ECDH computation is performed on it.

The X3DH Encode(PK) function recommends the usage of a single byte constant to

represent the type of curve followed by the encoding specified in [5]. Pime uses direct encoding
specified in [5] for its ECDH public keys and [6] for its EdDSA keys but the type of curve is present
in the message’s header.

4.3 Authentication

X3DH specification mentions [2, section 4.1] the necessity of an identity authentication
mechanism and libsignal[10] implements a key fingerprints comparison to provide it. Pime
makes use of a ZRTP[9] call with an oral SAS verification to provide mutual identity
authentication. See implementation details in section 5.6

4.4 Optional features not implemented

• Double ratchet with header encryption as in [1, section 4]

• Retry request as in [3, section 4.1]

• Session expiration as in [3, section 4.2] but a related mechanism is implemented: A
Double Ratchet session expires after encrypting a certain number of messages without
performing any Diffie-Hellman ratchet step.

	
	

8	
	

5 Implementation details

5.1 Preliminaries

For clarity, the different terms used in this document are defined here:

• device Id: a unique string associated to a device, provided to Pime by Pryvate. It shall
be the GRUU[7]

• user Id: a unique string defining a user or a group of users, provided to Pime by Pryvate.
It shall be the sip URI.

• source: the device generating and encrypting a message.

• recipient: the parties targeted to receive and decrypt the message. Multiple devices can
be associated to the it so any mention of recipient must specify user Id or device Id to
clarify the intent.

5.2 HKDF

The HKDF function, as described in RFC5869 [8] is used in both X3DH and Double Ratchet. Pime
uses an implementation of HKDF based on SHA512. Its prototype in the pseudo-code is as
follow, all inputs and output have variable size. salt is optional and the function may be used
without(set to null in the pseudo-code). The size of the generated output key material, okm,
is arbitrary and depends only on request not on input or hash algorithm used.

function HKDFSHA512(salt, ikm, info)

return okm
end function

5.3 Double Ratchet

5.3.1 Diffie-Hellman

The ECDH function can be either X448 or X25519 as described in [5].

5.3.2 KDF_RK

As recommended in [1, section 5.2], this function uses HKDF[8] based on SHA512. The salt
is RK and ikm is the output of ECDH(DH_out). The info string is “DR Root Chain Key Derivation".
DH_out size depends on ECDH function used, X25519 produces a 32 bytes output, X448 a 56
bytes output.

function KDF_RK(RK(32bytes), DH_out(32, 56bytes))
info ← "DR Root Chain Key Derivation"
RK(32bytes)ǁCK(32bytes) ← HKDFSHA512(RK, DH_out, info)
return RK(32bytes), CK(32bytes)

end function

9	
	

5.3.3 KDF_CK

Implemented as described in [1, section 5.2]. Message key derivation outputs 48 bytes as it
generates the message key (MK(32bytes)) and the AEAD nonce (IV (16bytes)) as suggested in
[1, section 3.1 - ENCRYPT].

function KDF_CK(CK(32bytes))
MKǁIV ← HMACSHA512(ChainKey, 0x01)
CK ← HMACSHA 512(ChainKey, 0x02)
return CK(32bytes), MK(32bytes), IV (16bytes)

end function

5.3.4 RatchetEncrypt

The RatchetEncrypt function described in [1, section 3.4] is not directly used to encrypt the
message. Instead, to provide the group chat (see section 4.1.1) capabilities, an encryption
request must include a list of recipient devices (can contain one or more elements).
Each recipient in the list is composed of:

recipientDeviceId: the recipient device Id
DRsession: an active Double Ratchet session with the recipient device
DRmessage: encryption output (Double Ratchet Message) for this recipient device
peerDeviceStatus: an output giving a status on the recipient: unknown(till now thus),
untrusted or trusted

The output may be completed by a Cipher Message holding the encrypted plain text

according to the selected encryption policy,

The message is sent from the sender device to one recipient user (with one user Id and one
or more associated device Id) but also distributed to other devices registered to the same
sender user. Recipient devices in the list must all be linked to this, unique, recipient user Id
or to the sender user Id. For example:

• Alice, Bob and Claire are users Id. Each of them have several (nA, nB, nC) associated
devices with devices Id Alice.1, Alice.2, .., Alice.nA

• Alice, Bob and Claire are members of a group with user Id ttroup

• If Alice.1 sends a message to Bob, the inputs for the RatchetEncrypt function must
include Bob as recipient user and Bob.1, .., Bob.nB, Alice.2, .., Alice.nA as list of recipient
devices.

• If Alice.1 sends a message to ttroup, the inputs for the RatchetEncrypt function must
include ttroup as recipient user and Bob.1, .., Bob.nB, Alice.2, .., Alice.nA, Claire.1, ..,
Claire.nC as list of recipient devices.

• The Pime library does not perform any check on the link between user Id and device Id
and will not generate any error if the RatchetEncrypt arguments are Bob as recipient
user and Bob.1, .., Bob.nB, Alice.2, .., Alice.nA, Claire.1 as list of recipient devices. The
error would instead be detected by Claire.1 during decryption. See 5.3.6 for details on
the use of Associated Data to detect mismatching association of user Id and device Id.

10		

Encryption policy: As stated in section 4.1.1, the plain message can be:

• encrypted directly in the Double Ratchet messages. (Double Ratchet Message
encryption policy)

• encrypted by a random key in a common cipher message, the random key being
encrypted into the Double Ratchet messages. (Cipher Message encryption policy)

The two policies are represented on the following diagrams. It is assumed that the server will
dispatch only the requested parts to recipients and not the whole upload. Double Ratchet
sessions establishment are not shown on the diagram but are assumed to be already
completed between all participants. All participants have one device only.

Selection of the encryption policy according to policy parameter, recipientLists and plain

text characteristics. The policy parameter is given at runtime by caller and default to optimize
Upload Size if omitted. Possible values of this parameter are:

• Double Ratchet Message: the plain text is encrypted and embedded in the Double
Ratchet message.

	
	

encrypt	
	

	

Claire	Bob	SIP	server	Alice	

msc Double	Ratchet	Message	encryption	policy	

encrypt	
	
Bob	DR	msgǁClaire	DR	msgǁcipher	Message	
	

Bob	DR	msgǁcipher	Message	
Claire	DR	msgǁcipher	Message	

Claire	Bob	SIP	server	Alice	

msc Cipher	Message	encryption	policy	

11		

• cipher Message: the plain text is encrypted in a cipher message with a random key,
itself encrypted in the DR message.

• optimize Upload Size: for each message, select the mode which minimize the upload
size. This is the default policy.

• optimize Global Bandwidth: for each message, select the mode which minimize upload
+ download size.

Note : the optimize modes do not take in consideration the multipart boundary added by
the presence of an extra part holding the cipher Message.

function MESSAGEENCRYPT(recipientList, plain, sourceDeviceId, recipientU s erId, policy)

switch policy do
case DoubleRachetMessage

DRMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
case cipherMessage

CIPHERMESSAIGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
case optimize Upload Size

n ← number of recipients in the recipientList
DRMessageSize ← n × plain size
cipherMessageSize ← (plain size+authTag size)+n×(randomSeed size)
if DRmessageSize ≤ cipherMessageSize then

DRMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
else

CIPHERMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
end if

case optimize global Bandwidth
n ← number of recipients in the recipientList
DRMessageSize ← 2 × n × plain size cipherMessageSize
← (plain size + authTag size)

+n×(2×randomSeed size+plain size+authTag size)
if DRmessageSize ≤ cipherMessageSize then

DRMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
else

CIPHERMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
end if

end function

with following functions definitions:
function DRMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
⊲ Encrypts the plain in the Double Ratchet message

for all r ∈ recipientList do
AD ← recipientU serIdǁsourceDeviceIdǁr.recipientDeviceId r.DRmessage
← RATCHETENCRYPT(r.session, plain, AD)

end for
return recipientList

end function

12		

function CIPHERMESSAGEENCRYPT (recipientList, plain, sourceDeviceId, recipientU serId)
⊲ Generate a random key and nonce to encrypt the plain

randomSeed(32bytes) ← RANDOMSOURCE
info ← "DR Message Key Derivation"
key(32bytes)ǁIV (16bytes) ← HKDFShA512(null, randomSeed, info) cipherM essage(plainsize+16bytes) ←
ENCRYPT(key, IV, plain, sourceDeviceIdǁrecipientU serId)

⊲ Use Double Ratchet sessions to encrypt the random seed used to encrypt the plain

for all r ∈ recipientList do
AD ← tagǁsourceDeviceIdǁr.recipientDeviceId
r.DRmessage ← RATCHETENCRYPT(r.session, randomSeed, AD)

end for
return recipientList, cipherMessage

end function

function RATCHETENCRYPT(DRsession, plaintext, AD)
as described in [1, section 3.4]:

CKs, mK, IV ← KDF_CK(CKs)
header ← hEADEr(DHs, P N, N s) N s+
= 1
UPDATEDRSESSIONINLOCALSTORAGE(DRsession)
return headerǁENCRYPT(mK, IV, plaintext, ADǁX3DH provided ADǁheader)

end function

function ENCRYPT(key(32bytes), IV (16bytes), plain, associatedData)
return AES256-GCM outputǁAuth tag (on plain and associatedData)(16bytes)

end function

Header function is specified in section 6.1.1

5.3.5 RatchetDecrypt

The decryption function described in [1, section 3.5] is not directly used to decrypt the
message. Pime first assess the presence of a cipher message and depending on it use directly
the Double Ratchet or perform the two steps of encryption: first decrypt the Double Ratchet
message to retrieve the random Key and IV, then decrypt the message itself.

The receiving process described in Sesame specifications [3, section 3.4] is partly

implemented in the Double Ratchet decryption process: the message decrypt function accepts
a list of Double Ratchet sessions and tries them all until one decrypts correctly the message
(or all fail).

The decryption returns the peer device’s status (unknown, unsafe, untrusted or trusted) in

case of success or fail in case of failure.

13		

function MESSAGEDECRYPT(sourceDeviceId,
recipientDeviceId, recipientUserId, DRsessionList,
DRmessage, cipherMessage)

if cipherMessage∃ then
return CIPHERMESSAGEDECRYPT(sourceDeviceId, recipientDeviceId,

recipientDeviceId, recipientUserId DRsessionList,
DRmessage, cipherMessage)

else
return DRMESSAGEDECRYPT(sourceDeviceId, recipientDeviceId,

recipientDeviceId, recipientUserId
DRsessionList, DRmessage)

end if
end function

function DRMESSAGEDECRYPT(sourceDeviceId,

recipientDeviceId, recipientUserId,
DRsessionList, DRmessage)

AD ← recipientUserIdǁsourceDeviceIdǁrecipientDeviceId
for all DRsession ∈ DRsessionList do

if plain ← RATCHETDECRYPT(DRsession, DRmessage, AD) then return
plain

end if
end for
return fail

end function

function CIPHERMESSAGEDECRYPT(sourceDeviceId,
recipientDeviceId, recipientUserId, DRsessionList,
DRmessage, cipherMessage)

AD ← tagǁsourceDeviceIdǁrecipientDeviceId
for all DRsession ∈ DRsessionList do

if randomSeed ← RATCHETDECRYPT(DRsession, DRmessage, AD) then
info ← "DR Message Key Derivation"
key(32bytes)ǁIV (16bytes) ← HKDFShA512(null, randomSeed(32bytes), info)
return AEADDECRYPT&AUTH(key, IV, cipher, tag, sourceDeviceIdǁrecipientU serId)

end if
end for
return fail

end function

function RATCHETDECRYPT(DRsession, headerǁpayloadǁtag, AD)
As described in [1, section 3.5]
Associated Data given to AEAD is ADǁX3DHprovidedADǁheader
if Success then

UPDATEDRSESSSIONINLOCALSTORAGE(DRsession)
end if

 end function

14		

5.3.6 Associated Data

The double ratchet encryption and decryption AEAD scheme uses Associated Data as
recommended by X3DH and Double Ratchet specifications [2, section 3.3], [1, section 3.4].
The Associated Data authenticated is composed of:

Cipher Message encryption policy

Message Tag(16bytes)ǁSource deviceIdǁRecipient deviceIdǁX3DHAD(32bytes)ǁDR Header

Double Ratchet Message encryption policy
Recipient UserIdǁSource deviceIdǁRecipient deviceIdǁX3DHAD(32bytes)ǁDR Header

• Message Tag: AEAD authentication tag computed on plaintext and the associated data

given to AEAD in cipher Message mode: Source deviceIdǁRecipient UserId.

• Recipient UserId: The inclusion of Recipient UserId allows the recipient device to verify
the original intended recipient user. The Recipient UserId is provided to the recipient
device along the message by the routing protocol as it may not be the UserId linked to
the recipient device but a group user Id.

• Source deviceId and Recipient deviceId: Enforce identification of source and recipient
device.

• X3DH AD: Associated data computed at session creation by the X3DH protocol, based
on both parties Identity keys and devices Id. See 5.4.3 for details. It is present in the
device local storage from the X3DH initialisation completion.

• DR Header: as specified in [1, section 3.4]. See 6.1.1 for details.

5.4 X3DH

As stated in section 4.2, Pime does not use XEdDSA but manipulates two key formats: the
identity key is stored in EdDSA format (as defined in [6]); while all the other keys are stored
in ECDH format (as defined is [5]).

5.4.1 DH

Available Diffie-Hellman algorithms are X25519 and X448, the DH computations per-
formed strictly follow the X3DH specifications.

5.4.2 Sig

The signature/verify operation performed is an EdDSA (both EdDSA25519 and Ed- DSA448
are available). The identity key used is stored in EdDSA format so there is no need to use
XEdDSA contrary to the X3DH specifications [2, section 2.2].

15		

5.4.3 Shared Secrets generation

SK is computed as specified in [2, section 3.3 and 2.2]. The salt used for the HKDF function is
a zero filled buffer the size of the hash function used, the info parameter is "Pime".

ZeroBuffer(SHA512outputsize(64bytes)) ← 0
SK(32bytes) ← HKDFSHA512(ZeroBuffer, F (32, 57bytes)ǁDH1ǁDH2ǁDH3ǁDH4,"Pime")

F is a 32 (when using curve25519) or 57 (when using curve448) bytes 0xFF filled buffer.

Associated Data is computed from identity keys and devices Id as specified in [2, section 3.3].
For implementation convenience, the actual AD used by the Double Ratchet session is derived
from these inputs by the HKDF function producing a fixed size buffer as following:

ZeroBuffer(SHA512outputsize(64bytes)) ← 0
ADinput ← initiatorIkǁreceiverIkǁinitiatorDeviceIdǁreceiverDeviceId AD(32bytes) ←
HKDFSHA512(ZeroBuffer, ADinput,"X3DH Associated Data")

initiator being the device who initiates the session (Alice in the X3DH spec) by fetching a keys
bundle on the X3DH server and receiver being the recipient device of the first message (Bob in
the X3DH spec).

5.4.4 X3DH test server

Nodejs : An X3DH test server running on nodejs is provided with the Pime library source code.
This server is not meant to be used in production and its purpose is for testing only. This server
lacks user authentication layer, which in real use case is provided by the pryvate ecosystem.

5.5 Sesame

The Sesame requirements are fulfilled as follow:

• Pime is operating in per-device identity keys mode.

• Providing an updated list of Devices Id to match the intended recipients (and sender
user other devices) is performed by the pryvate ecosystem (SIP and con- ference server).
So the loop between client and server during encryption described in the Sesame spec[3]
is not relevant. Pime relies on the SIP or conference server to provide an updated list of
recipient devices before the message encryption.

• Encrypt message to multiple recipient device is performed by the Pime Double Ratchet
messageEncrypt function (see section 5.3.4).

• Support for multiple sessions between devices is performed by Pime Double Ratchet
messageDecrypt trying multiples sessions, if present, to find one able to decrypt the
incoming message.

• User and device identifications are provided by the pryvate ecosystem: a user Id is its
sip:uri, also used to identify groups. A device Id is its GRUU[7]. The connection to the
X3DH server is performed over HTTPS and uses the user authentication associated to
the SIP user account.

• Mailboxes and message routing are provided by the pryvate ecosystem

16		

5.5.1 Scenario 1: first encryption, multiple devices

Alice1 encrypts a message to Bob for the first time. Alice1 must establish Double Ratchet
sessions and, for that, requests key bundles. It is assumed that Alice2 is known to Alice1; so,
there is no request for an Alice2 key bundle. The cipher message encryption policy is used.

get	Bob1,	Bob2	keys	bundles	
get	Alice	user	credentials	

auth	challenge	
Alice	user	credentials	

auth	challenge	response	
	

Check	credentials	
Bob1,	Bob2	keys	bundles	

	
encrypt	
	

	
	

Alice2	DR	msgǁcipher	Message	
Bob1	DR	msgǁcipher	Message	

Bob2	DR	msgǁcipher	Message	

Bob2	Bob1			Alice2	

	

Alice1	

msc Alice1	encrypts	to	Bob	for	the	first	time	

17		

5.5.2 Scenario 2: group chat

Alice sends a first message to a group called Friends composed of Alice, Bob and Carol.
Alice’s message is dispatched and then Carol posts a message to the group. Carol’s message
is dispatched and finally Bob sends a message to the group. It is assumed that users did not
exchanged any message prior and that they have one device each. User authentication
messages to and from X3DH server are not shown for better readability but the users’
authentication by X3DH server and X3DH server authentication by users must take place. The
cipher message encryption policy is used.

Bob,	Carol	DR	msgǁcipher	Message	
Bob	DR	msgǁcipher	Message	

	
	

	
	

get	Bob	keys	bundles	
Bob	keys	bundles	

	
encrypt	

	
Alice,	Bob	DR	msgǁcipher	Message	

Alice	DR	msgǁcipher	Message	
Bob	DR	msgǁcipher	Message	

	

	
	

encrypt	
	

Alice,	Carol	DR	msgǁcipher	Message	
Alice	DR	msgǁcipher	Message	

	

encrypt	

	
	

	
get	Bob,	Carol	keys	bundles	
Bob,	Carol	keys	bundles	

			Bob	Alice	

msc Group	chat	establishment,	Friends is	composed	of	Alice,	Bob	and	Carol	

18		

5.6 Mutual authentication and peer device status

As stated in [2, section 4.1], the parties shall compare their identity public keys other- wise
they receive no cryptographic guarantee as to whom they are communicating with. Each peer
device has a status available after any encryption or decryption operation which can be:

• unknown: we had no information about this device in the local storage (before the last
encryption or decryption), this status spots a newly encountered device and shall be
clearly made available to the end user.

• untrusted: it’s is not the first interaction with this device, but we never established
mutual authentication

• trusted: we already performed the mutual authentication ritual with this peer device.

• unsafe: we know this device, it has been tagged as unsafe by the application (Pryvate).

Pime provides an API to set/get peer devices identity keys and trust level indexed by its
device Id. Pryvate uses a ZRTP[9] audio call leveraging the MiTM detection offered by the ZRTP
short authentication string to authenticate the peer identity key. ZRTP auxiliary secret is used
to compare both parties’ identity public keys in the following way:

• parties exchange their identity public keys in the signaling channel at call
establishment;

• parties use caller Ikǁreceiver Ik as ZRTP auxiliary secret;

• when ZRTP key exchange is complete, parties check that the auxiliary secret is
matching and perform a vocal SAS comparison (if not performed before); and

• if the verification succeeds, each party sets the peer Ik status as trusted in the Pime local
storage. If the peer key is already present in the Pime local storage, Pime verifies that
it matches the one obtained through the ZRTP channel.

In the following diagram alice Ik and bob Ik refer to the identity public key associated to the

particular devices used by Alice and Bob to perform the ZRTP audio call.

19		

5.7 Keys and sessions management

Key lifetime management is the responsibility of the client device; the X3DH server is not
involved in their management. On a regular schedule (once a day is recommended), the device
must run the update function to check keys validity, renew and delete out- dated ones. Several
settings are involved in the update operation and are all defined in pime_settings.hpp.

5.7.1 Identity Key

Is valid for the lifetime of a device.

5.7.2 Signed Pre-Key

SPK_lifeTime_days is a constant (7 days default) defining the key validity period. Once a
key is outdated, a new one is generated, signed and uploaded on the X3DH server. Old
keys are kept in storage with an invalid status so valid but delayed X3DH initiation
messages using this signed pre-key can still be processed.

SPK_limboTime_days is a constant (30 days default) defining the period invalid keys are
kept by the device.

5.7.3 One-time Pre-Key

These can be used only once, so any use implies immediate deletion:

• when the server delivers a One-time Pre-key, it immediately deletes it; and

• when a client makes use of one of its One-time Pre-key (upon reception from peer of
an X3DH init message using that key), it immediately deletes it.

set	alice Ik as	trusted	
in	Lime	local	storage	

set	bob Ik as	trusted	
in	Lime	local	 storage	

	
	

	

	

	

	

	

SIP	200	Ok	with	bob Ik

Bob	Alice	

	

20		

During update, a device requests from the X3DH server the list of its own OPk available on the
server. The device can upload more keys if there are not enough online and track which keys
where delivered by the server but not yet used by comparing the server’s OPk list and the
OPk actually in local storage.

The three following constants can be overridden at runtime by parameters passed to the

update or create_user functions:

OPK_serverLowLimit is a constant (100 default) defining the lower bound of keys count
present on server. During an update, if there are fewer occurrences of keys on the X3DH
server, the client will generate and upload a batch of One-time Pre-keys.

OPK_batchSize is a constant (25 default) defining the number of keys generated and uploaded
to the server if an upload is needed.

OPK_initialBatchSize is a constant (100 default) defining the number of keys generated and
uploaded to the server at the registration of a new user device.

During update, the client will update the status of One-time Pre-keys in local storage to

reflect the information provided by the server. Any key still in local storage but no longer on
the server is assigned the dispatched status.

During update, the device deletes One-time Pre-keys having the dispatched status for a

longer than pre-determined period of time.

OPK_limboTime_days is a constant (37 days default) defining the period dispatched One-
time Pre-keys are kept by the device.

5.7.4 Double Ratchet Sessions

More than one double ratchet session may exist between two devices but only one shall be
active. The encryption is always performed by the active session and, on reception, the session
successfully decrypting the message becomes the active session. Stalled sessions are kept for
a pre-determined period of time to allow decrypting of delayed or unordered messages:

DRSession_limboTime_days is a constant (30 days default) defining the period stalled
sessions are kept by the device.

In case a peer device is silent, the double ratchet session will never perform a Diffie-

Hellman ratchet but only symmetric ratchet steps. To mitigate this problem, a predefined limit
on the number of messages encrypted without performing Diffie-Hellman is set (effectively
being a limit on the length of the sending chain, each Diffie-Hellman ratchet reset the sending
chain counter):

21		

maxSendingChain is a constant (1000 default) defining the maximum length of a sending
chain. When reached, the Double Ratchet session status is stalled, forcing the sender device
to create a new session; fetching a new key bundle from the X3DH server in order to keep on
sending messages.

5.7.5 Skipped message keys

As messages may be out of order on reception, Double Ratchet specifies how skipped
intermediate messages keys, generated to decrypt a received message, shall be stored to
allow the decryption of out-of-order messages. After a pre-determined number of messages
successfully decrypted by a double ratchet session, skipped messages are considered lost and
their stored message keys are deleted from local storage:

maxMessagesReceivedAfterSkip is a constant (128 default) linked to a double ratchet
receiving chain (a new chain is started within the session each time a Diffie- Hellman ratchet
is performed). Each time a skipped message key is stored in this chain, the counter is reset.
Each time a message is decrypted by the session, all skipped message key chain counters are
increase by one. When the counter reaches maxMessagesReceivedAfterSkip, the skipped
message key chain is deleted.

5.8 Local Storage

The local storage is provided by a sqlite3 database accessed using the SOCI library [13].

5.8.1 Devices tables

pime_LocalUsers stores data relative to local devices.

• Uid: integer primary key.

• UserId: the device Id provided by pryvate, it shall be the GRUU.

• Ik: Identity key, an EdDSA key stored as public key ǁ private key.

• server: the X3DH server URL to be used by this user.

• curveId: An unsigned integer, mapped as following:

– LSB(bit 7 to 0) stores the curve id mapped to integers: 0x01 for Curve 25519 or
0x02 for Curve 448. This value must match the X3DH server setting.

– bit 8 is the active flag: 0 for active user, 1 for inactive user

pime_PeerDevices Note: Records in this table are not linked to a local user but shared among
local users in order to avoid storing multiple records containing the same information.

• Did: integer primary key.

• DeviceId: the peer device Id, it shall be its GRUU.

• Ik: the peer’s public EdDSA identity key

22		

• Status: status flag:

– 0 for untrusted: peer’s identity is not verified (default value)

– 1 for trusted: peer’s identity was already verified

– 2 for unsafe: peer’s device has been flagged as unsafe

see this document section 5.6 for usage.

5.8.2 X3DHs tables

The X3DH dedicated tables store local users’ Signed Pre-keys and One-time Pre-keys, records
are linked to a local user through a foreign key: Uid.

X3DH_SPK Note: signature is computed and uploaded to the server at key generation but
is then not needed, so not stored locally.

• SPKid: a random Id (unsigned integer on 31 bits) to identify the key. This value being
public, it is not a sequence but a random number.

• SPK: an ECDH key (stored as public keyǁprivate key).

• timeStamp: is set to current time when the key status is set to invalid.

• Status: set to valid (1) at creation and then to invalid (0) when a new key is generated.

• Uid: link to pime_LocalU sers: identifies which local user owns this record.

X3DH_OPK

• OPKid: a random Id (unsigned integer on 31 bits) to identify the key. This value being
public, it is not a sequence but a random number.

• OPK: an ECDH key (stored as public keyǁprivate key).

• timeStamp: is set to current time when the key status is set to dispatched.

• Status: set to online (1) at key generation and then to dispatched (0) when the key is
not found any more on the X3DH server by the update request.

• Uid: link to pime_LocalU sers: identify which local user owns this record.

5.8.3 Double ratchet tables

The Double Ratchet tables store all material needed for the Double Ratchet session, including
dedicated tables for skipped keys. Records are linked to local and peer devices through foreign
keys: Uid and Did.

23		

DR_sessions

• Did: link to pime_P eerDevices: identify peer device for this session.

• Uid: link to pime_LocalU sers: identify local device for this session.

• sessionId: integer primary key.

• Ns: index of current sending chain.

• Nr: index of current receiving chain.

• PN: index of previous sending chain.

• DHr: peer’s ECDH public key.

• DHs: self ECDH key (publicǁprivate).

• RK: Diffie-Hellman Ratchet Root key.

• CKr: Symmetric Ratchet receiver chain key.

• CKs: Symmetric Ratchet sender chain key.

• AD: session Associated Data (provided at session creation by X3DH).

• Status: active (1) or stale (0), only one session can be active between two devices.

• timeStamp: is set to current time when the status is set switched from active to stale.

• X3DHInit: holds the X3DH init message while it is requested to insert it in message
header.

The two following tables store the skipped message keys, indexed by peer’s ECDH public

key and receiving chain index:

DR_MSk_DHr stores key chain information: peer’s ECDH public keys.

• DHid: integer primary key

• sessionId: link to DR_sessions: identifies to which session this chain of skipped
message keys belongs.

• DHr: peer’s ECDH public key associated to this message key chain.

• received: counts the messages successfully decrypted after the last insertion of a
skipped message key in this chain. Is used to delete old message keys.

DR_MSk_MK is the actual storage of message keys.

• DHid: link to DR_M Sk_DHr: identifies to which receiving chain this message key belongs.

• Nr: index of the skipped message in the receiving chain.

• MK: the message key(32bytes)ǁinitial vector(16bytes).

24		

5.9 Summary of cryptographic algorithms used

5.9.1 Double Ratchet

• Diffie-Hellman using either X25519 or X448

• KDF are HKDF[8] based on Sha512

• ENCRYPT is AES256-GCM with a 128bits authentication tag

5.9.2 X3DH

• Diffie-Hellman using either X25519 or X448

• HKDF uses Sha512

• Signature uses EdDSA25519 or EdDSA448

• EdDSA keys are converted to ECDH keys to perform classic ECDH

5.9.3 Cryptographic libraries

Elliptic curves operations are provided by decaf library[11], version 0.9.4 or above: X25519,
X448, EdDSA25519, EdDSA448 and conversion function from EdDSA key to ECDH key format.

Hash (HmacSha512) and encryption (AES256-GCM) are provided by mbedtls library[12].

Version 2.1 or above.

Note: These libraries are not accessed directly but through the bctoolbox abstraction library.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

25		

6 Protocol specification

This	section	describes	the	details	of	messages	structures.	
	

Notes:	Keys	are	intended	as	public	keys	and	their	size	depends	on	the	selected	curve	
indicated	in	the	message’s	header.	The	following	sizes	 apply:	

• Curve	25519	ECDH:	32	 bytes	

• Curve	25519	EdDSA:	32	 bytes	

• Curve	25519	Signature:	64	bytes	

• Curve	448	ECDH:	56	 bytes	

• Curve	448	EdDSA:	57	 bytes	

• Curve	448	Signature:	114	bytes	

Keys	are	stored	and	distributed	in	the	formats	described	in	[5]	and	[6].	
Others	numeric	values	(counts,	Ids,	counters)	are	unsigned	integers	in	big	endian.	

6.1 Double Ratchet message

These	messages	are	exchanged	among	devices.	The	system	runs	in	asynchronous	mode,	
and	messages	are	sent	to	and	stored	by	a	server	and	are	fetched	by	final	recipients	when	
online.	 The	 server	 in	 charge	 of	 storing/routing	 the	 messages	 shall	 fan-out	 to	 the	
respective	recipients	not	all	the	incoming	message	but	only	the	part	addressed	to	them.	
	

Double	 Ratchet	messages	 are	 composed	 of	 header	 and	 payload.	 The	 payload	 is	 the	
AEAD	output	(cipher	text	and	authentication	tag)	of	either	a	random	seed	used	to	encrypt	
the	plain	message	or	the	plain	message	itself	according	to	selected	encryption	policy.	The	
sender	produces	one	Double	Ratchet	message	per	recipient	device.	
Definitions:	

• Protocol	Version:	0x01.	

• Message	Type	 is	a	byte	with	 following	bit	mapping:	

– bit	7	to	2:	not	 used.	
– bit	1:	Payload	encryption	flag:	

∗	1:	payload	in	the	DR	message	
∗	0:	payload	in	a	cipher	message,	DR	holds	the	random	seed	

– bit	0:	X3DH	init	flag:	
∗	1:	(X3DH	init	in	the	header)	
∗	0:	(no	X3DH	init	in	the	header)	

• Curve	Id:	 [0x01	(curve	25519),	0x02	(curve	448)]

26		

6.1.1 Header

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type Curve Id [0x01,0x02]

X3DH Init (variable size){0,1}
This part is present only if Message type X3DH init flag is set
Ns PN

DHs(32, 56bytes)
...

6.1.2 Payload in cipher message encryption policy

byte 0 byte 1 byte 2 byte 3

Random Seed encrypted using DR session(32bytes)
...

Double Ratchet AEAD authentication tag(16bytes)
...

6.1.3 Payload in Double Ratchet message encryption policy

byte 0 byte 1 byte 2 byte 3

plaintext encrypted using DR session(variable size, same as plaintext)
...

Double Ratchet AEAD authentication tag(16bytes)
...

6.1.4 X3DH init

byte 0 byte 1 byte 2 byte 3
OPk flag [0x00,0x01]

EdDSA Identity Key(32, 57bytes)
...

ECDH Ephemeral Key(32, 56bytes)
...

Signed Pre-key Id
One Time Pre-key Id{0,1} only if OPk flag = 0x01

6.2 Cipher Message

.	 The	 cipher	message	 is	 produced	 only	when	 selecting	 the	 cipher	message	 encryption	
policy.	The	sender	produces	one	cipher	message	common	to	all	recipients.	When	present,	
the	cipher	message	is	dispatched	along	the	Double	Ratchet	messages.(see	5.3.4	for	details)	

	
	

byte 0 byte 1 byte 2 byte 3

Cipher text produced by AEAD using a derivative of Random Seed <variable size>
...

AEAD authentication tag(16bytes)
...

27		

6.3 X3DH message

These	messages	are	exchanged	between	devices	and	the	X3DH	key	server.	
	

The	 messages	 are	 sent	 to	 the	 server	 using	 the	 HTTPS	 protocol.	 Clients	 identify	
themselves	 to	 the	server	by	setting	 their	device	 Id	(GRUU)	 in	 the	HTTPS	packet	From
field.	Server	challenges	the	client	with	a	nonce	and	expects	a	digest	of	the	password	of	
their	user	account	on	the	SIP	server.	X3DH	server	must	have	access	to	the	SIP	register	
server	database	to	be	able	to	authenticate	clients.	Communications	between	clients	and	
X3DH	server	are	assumed	to	be	secure	and	the	details	of	this	assumption	are	out	of	the	
scope	of	this	document.	
	

X3DH	messages	are	composed	of	a	header	and	the	content:	
Protocol	Version(1byte)ǁ Message	Type	(1byte)ǁ Curve	Id	(1byte)ǁ Message	content.	
Definitions:	

• Protocol	Version:	0x01.	

• Message	Type:	

– 0x01: deprecated register User:	 a	device	registers	its	Id	and	Identity	key	on	
X3DH	server,	this	message	holds	the	Ik	only	and	shall	be	supported	for	retro-	
compatibility	with	old	clients	 only.	

– 0x02: delete User:	a	device	deletes	its	Id	and	Identity	key	from	X3DH	server.	
– 0x03: post Signed Pre-key:	a	device	publishes	a	Signed	Pre-key	on	X3DH	
server.	

– 0x04: post One-time Pre-keys:	a	device	publishes	a	batch	of	One-time	Pre-	
keys	on	X3DH	server.	

– 0x05: get peers key bundles:	a	device	requests	key	bundles	for	a	list	of	peer	
devices.	

– 0x06: peers key bundles:	X3DH	server	responds	to	device	with	the	list	of	
requested	key	bundles.	

– 0x07: get self One-time Pre-keys:	ask	server	for	self	One-time	Pre-keys	Ids	
available.	

– 0x08: self One-time Pre-keys:	server	response	with	a	count	and	list	of	all	
One-time	Pre-keys	Ids	available.	

– 0x09: register User:	a	device	registers	its	Id	and	Identity	key,	Signed	Pre-key	
and	a	batch	of	One-time	Pre-keys	on	X3DH	server.	

– 0xFF: error :	something	went	wrong	on	server	side	during	processing	of	client	
message,	server	respond	with	details	on	 failure.	

• Curve	Id:	 [0x01	(curve	25519),	0x02	(curve	448)]	

To	device	generated	messages	(deprecated) register User, delete User, post Signed
Pre-key and	post One-time Pre-key,	on	success,	 the	X3DH	server	responds	with	 the	
original	message	header:	
Protocol	Version	ǁ Message	type	ǁ Curve	Id

28		

6.3.1 Register User Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x09] Curve Id [0x01,0x02]

EdDSA Identity Key(32, 57bytes)
...

ECDH Signed Pre-key(32, 56bytes)
...

ECDH Signed Pre-key Signature(64, 114bytes)
...

Signed Pre-key Id

keys Count One-time Pre-key bundle(36, 60bytes){keys Count}
...

with One-time Pre-key bundle:

byte 0 byte 1 byte 2 byte 3

ECDH One-Time Pre-key(32, 56bytes)
...

One-Time Pre-key Id

6.3.2 Delete User Message

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x02] Curve Id [0x01,0x02]

6.3.3 post Signed Pre-key Message

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x03] Curve Id [0x01,0x02]

ECDH Signed Pre-key(32, 56bytes)
...

ECDH Signed Pre-key Signature(64, 114bytes)
...

Signed Pre-key Id

6.3.4 post One-time Pre-key Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x04] Curve Id [0x01,0x02] keys Count MSB

keys Count LSB One-time Pre-key bundle(36, 60bytes){keys Count}
...

with One-time Pre-key bundle:

byte 0 byte 1 byte 2 byte 3

ECDH One-Time Pre-key(32, 56bytes)
...

One-Time Pre-key Id

29		

6.3.5 get peers key bundles Message
	

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x05] Curve Id [0x01,0x02] request Count MSB
request Count LSB request{request Count}

...

with request:

byte 0 byte 1 byte 2 byte 3
Device Id size Device Id(variable size)...

...Device Id(variable size)

6.3.6 peers key bundles Message

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x06] Curve Id [0x01,0x02] bundles Count MSB
bundles Count LSB key Bundle{bundles Count}

...

with key Bundle(if a the device has published keys on the server):

byte 0 byte 1 byte 2 byte 3
Device Id size Device Id(variable size)...

...Device Id(variable size)
bundle flag [0x00,0x01]

EdDSA Identity Key(32, 57bytes)
...

ECDH Signed Pre-key(32, 56bytes)
...

Signed Pre-key Id

ECDH Signed Pre-key Signature(64, 114bytes)
...

ECDH One-Time Pre-key(32, 56bytes){0,1} only if bundle flag = 0x01
...

One-Time Pre-key Id{0,1} only if bundle flag = 0x01

or key Bundle(if a the device has not published keys on the server):

byte 0 byte 1 byte 2 byte 3
Device Id size Device Id(variable size)...

...Device Id(variable size)
bundle flag [0x02]

6.3.7 get Self OPks Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x07] Curve Id [0x01,0x02]

6.3.8 elf OPks Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x08] Curve Id [0x01,0x02] OPk Count MSB
OPk Count LSB OPk Id(4bytes){OPk Count}

...

30		

6.3.9 Error Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0xFF] Curve Id [0x01,0x02] Error Code[0x00-0x08]

Optional error message of variable size
Null terminated ASCII string

...

With	Error	codes	in:	

• 0x00:	bad content type:	HTTPS	packet	content-type is	not	"x3dh/octet-stream"	

• 0x01:	bad curve:	client	and	server	curve	mismatch.	

• 0x02:	missing Sender Id:	HTTPS	packet	from is	not	set.	

• 0x03:	bad protocol version:	client	and	server	X3DH	protocol	version	number	
mismatch.	

• 0x04:	 bad size:	 the	size	of	received	Message	is	not	 the	expected	one	

• 0x05:		user already in:		trying	to	register	a	user	on	X3DH	server	but	it	is	already			in	
the	database	

• 0x06:	user not found:	an	operation	concerning	a	user	could	not	be	performed	
because	the	user	was	not	found	in	server	database.	

• 0x07:	 db error:	 server	encountered	problem	with	 its	database.	

• 0x08:	bad request:	malformed	peer	bundle	request.	

6.3.10 Deprecated Register User Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x01] Curve Id [0x01,0x02]

EdDSA Identity Key(32, 57bytes)
...

	
	
	
	
	
	
	

31		

7 References

[1] Moxie	Marlinspike,	Trevor	Perrin	(editor)	"The Double Ratchet Algorithm",	Revision	
1,	2016-11-20.	 https://signal.org/docs/specifications/doubleratchet/	

[2] Moxie	Marlinspike,	Trevor	Perrin	(editor)	 "The X3DH Key Agreement Protocol",	
Revision	1,	2016-11-04.	https://signal.org/docs/specifications/x3dh/	

[3] Moxie	 Marlinspike,	 Trevor	 Perrin	 (editor)	 "The Sesame Algorithm: Session
Management for Asynchronous Message Encryption",	 Revision	2,	2017-04-14.	
https://signal.org/docs/specifications/sesame/	

[4] Trevor	Perrin	(editor)	"The XEdDSA and VXEdDSA Signature Schemes",	Revision	
1,	2016-10-20.	https://signal.org/docs/specifications/xeddsa/	

[5] A.	Langley,	M.	Hamburg,	and	S.	Turner,	"Elliptic Curves for Security.",	Internet	
Engineering	 Task	 Force;	 RFC	 7748	 (Informational);	 IETF,	 Jan-2016.	
http://www.ietf.org/rfc/rfc7748.txt	

[6] S.	 Josefsson	and	 I.	Liusvaara	 "Edwards-Curve Digital Signature Algorithm (Ed-
DSA)",	Internet	Engineering	Task	Force;	RFC	8032	(Informational);	IETF,	Jan-	2017.	
https://tools.ietf.org/html/rfc8032	

[7] J.	Rosenberg	"Obtaining and Using Globally Routable User Agent URIs (GRUUs) in
the Session Initiation Protocol (SIP)",	Internet	Engineering	Task	Force;	RFC	5627	
(Standards	Track);	IETF,	Oct-2009.	https://tools.ietf.org/html/rfc5627	

[8] H.	 Krawczyk	 and	 P.	Eronen	 "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)",	Internet	Engineering	Task	Force;	RFC	5869	(Informational);	
IETF,	May-2010.	https://tools.ietf.org/html/rfc5869	

[9] P.	Zimmermann,	A.	Johnston	and	J.	Callas	 "ZRTP: Media Path Key Agreement for
Unicast Secure RTP",	Internet	Engineering	Task	Force;	RFC	6189	(Informational);	
IETF,	April-2011.	https://tools.ietf.org/html/rfc6189	

[10] Whisper	Systems	"Signal Protocol C Library",	
https://github.com/WhisperSystems/libsignal-protocol-c	

[11] Mike	Hamburg	"Ed448-Goldilocks",	https://sourceforge.net/projects/ed448goldilocks/	

[12] ARM	mbed	"mbed TLS",	https://tls.mbed.org/	

[13] SOCI	"SOCI-The C++ Database Access Library.",	https://github.com/SOCI/soci	
	

